24 research outputs found

    A Control Architecture for Entanglement Generation Switches in Quantum Networks

    Full text link
    Entanglement between quantum network nodes is often produced using intermediary devices - such as heralding stations - as a resource. When scaling quantum networks to many nodes, requiring a dedicated intermediary device for every pair of nodes introduces high costs. Here, we propose a cost-effective architecture to connect many quantum network nodes via a central quantum network hub called an Entanglement Generation Switch (EGS). The EGS allows multiple quantum nodes to be connected at a fixed resource cost, by sharing the resources needed to make entanglement. We propose an algorithm called the Rate Control Protocol (RCP) which moderates the level of competition for access to the hub's resources between sets of users. We proceed to prove a convergence theorem for rates yielded by the algorithm. To derive the algorithm we work in the framework of Network Utility Maximization (NUM) and make use of the theory of Lagrange multipliers and Lagrangian duality. Our EGS architecture lays the groundwork for developing control architectures compatible with other types of quantum network hubs as well as system models of greater complexity

    Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

    Full text link
    The Transmission Control Protocol (TCP) utilizes congestion avoidance and control mechanisms as a preventive measure against congestive collapse and as an adaptive measure in the presence of changing network conditions. The set of available congestion control algorithms is diverse, and while many have been studied from empirical and simulation perspectives, there is a notable lack of analytical work for some variants. To gain more insight into the dynamics of these algorithms, we: (1) propose a general modeling scheme consisting of a set of functional differential equations of retarded type (RFDEs) and of the congestion window as a function of time; (2) apply this scheme to TCP Reno and demonstrate its equivalence to a previous, well known model for TCP Reno; (3) show an application of the new framework to the widely-deployed congestion control algorithm TCP CUBIC, for which analytical models are few and limited; and (4) validate the model using simulations. Our modeling framework yields a fluid model for TCP CUBIC. From a theoretical analysis of this model, we discover that TCP CUBIC is locally uniformly asymptotically stable -- a property of the algorithm previously unknown.Comment: IEEE INFOCOM 201

    On the Quantum Performance Evaluation of Two Distributed Quantum Architectures

    Full text link
    Distributed quantum applications impose requirements on the quality of the quantum states that they consume. When analyzing architecture implementations of quantum hardware, characterizing this quality forms an important factor in understanding their performance. Fundamental characteristics of quantum hardware lead to inherent tradeoffs between the quality of states and traditional performance metrics such as throughput. Furthermore, any real-world implementation of quantum hardware exhibits time-dependent noise that degrades the quality of quantum states over time. Here, we study the performance of two possible architectures for interfacing a quantum processor with a quantum network. The first corresponds to the current experimental state of the art in which the same device functions both as a processor and a network device. The second corresponds to a future architecture that separates these two functions over two distinct devices. We model these architectures as Markov chains and compare their quality of executing quantum operations and producing entangled quantum states as functions of their memory lifetimes, as well as the time that it takes to perform various operations within each architecture. As an illustrative example, we apply our analysis to architectures based on Nitrogen-Vacancy centers in diamond, where we find that for present-day device parameters one architecture is more suited to computation-heavy applications, and the other for network-heavy ones. Besides the detailed study of these architectures, a novel contribution of our work are several formulas that connect an understanding of waiting time distributions to the decay of quantum quality over time for the most common noise models employed in quantum technologies. This provides a valuable new tool for performance evaluation experts, and its applications extend beyond the two architectures studied in this work

    Optimal entanglement distribution policies in homogeneous repeater chains with cutoffs

    Full text link
    We study the limits of bipartite entanglement distribution using a chain of quantum repeaters that have quantum memories. To generate end-to-end entanglement, each node can attempt the generation of an entangled link with a neighbor, or perform an entanglement swapping measurement. A maximum storage time, known as cutoff, is enforced on the memories to ensure high-quality entanglement. Nodes follow a policy that determines when to perform each operation. Global-knowledge policies take into account all the information about the entanglement already produced. Here, we find global-knowledge policies that minimize the expected time to produce end-to-end entanglement. Our methods are based on Markov decision processes and value and policy iteration. We compare optimal policies to a policy in which nodes only use local information. We find that the advantage in expected delivery time provided by an optimal global-knowledge policy increases with increasing number of nodes and decreasing probability of successful swapping. Our work sheds light on how to distribute entangled pairs in large quantum networks using a chain of intermediate repeaters with cutoffs.Comment: 9 pages, 8 figures, 15 pages appendix with 10 figure

    On the Bipartite Entanglement Capacity of Quantum Networks

    Full text link
    We consider the problem of multi-path entanglement distribution to a pair of nodes in a quantum network consisting of devices with non-deterministic entanglement swapping capabilities. Multi-path entanglement distribution enables a network to establish end-to-end entangled links across any number of available paths with pre-established link-level entanglement. Probabilistic entanglement swapping, on the other hand, limits the amount of entanglement that is shared between the nodes; this is especially the case when, due to architectural and other practical constraints, swaps must be performed in temporal proximity to each other. Limiting our focus to the case where only bipartite entangled states are generated across the network, we cast the problem as an instance of generalized flow maximization between two quantum end nodes wishing to communicate. We propose a mixed-integer quadratically constrained program (MIQCP) to solve this flow problem for networks with arbitrary topology. We then compute the overall network capacity, defined as the maximum number of EPR states distributed to users per time unit, by solving the flow problem for all possible network states generated by probabilistic entangled link presence and absence, and subsequently by averaging over all network state capacities. The MIQCP can also be applied to networks with multiplexed links. While our approach for computing the overall network capacity has the undesirable property that the total number of states grows exponentially with link multiplexing capability, it nevertheless yields an exact solution that serves as an upper bound comparison basis for the throughput performance of easily-implementable yet non-optimal entanglement routing algorithms. We apply our capacity computation method to several networks, including a topology based on SURFnet -- a backbone network used for research purposes in the Netherlands

    Entanglement Routing over Networks with Time Multiplexed Repeaters

    Full text link
    Quantum networks will be able to service consumers with long distance entanglement by use of repeater nodes that can both generate external Bell pairs with their neighbors, iid with probability pp, as well as perform internal Bell State Measurements (BSMs) which succeed with some probability qq. The actual values of these probabilities is dependent upon the experimental parameters of the network in question. While global link state knowledge is needed to maximize the rate of entanglement generation between any two consumers, this may be an unreasonable request due to the dynamic nature of the network. This work evaluates a local link state knowledge, multi-path routing protocol that works with time multiplexed repeaters that are able to perform BSMs across different time steps. This study shows that the average rate increases with the time multiplexing block length, kk, although the initial latency also increases. When a step function memory decoherence model is introduced so that qubits are held in the quantum memory for a time exponentially distributed with mean μ\mu, an optimal kk (koptk_\text{opt}) value appears. As pp decreases or μ\mu increases the value of koptk_\text{opt} increases. This value is such that the benefits from time multiplexing are balanced with the increased risk of losing a previously established entangled pair.Comment: 11 pages, 15 figure

    Designing a Quantum Network Protocol

    Full text link
    The second quantum revolution brings with it the promise of a quantum internet. As the first quantum network hardware prototypes near completion new challenges emerge. A functional network is more than just the physical hardware, yet work on scalable quantum network systems is in its infancy. In this paper we present a quantum network protocol designed to enable end-to-end quantum communication in the face of the new fundamental and technical challenges brought by quantum mechanics. We develop a quantum data plane protocol that enables end-to-end quantum communication and can serve as a building block for more complex services. One of the key challenges in near-term quantum technology is decoherence -- the gradual decay of quantum information -- which imposes extremely stringent limits on storage times. Our protocol is designed to be efficient in the face of short quantum memory lifetimes. We demonstrate this using a simulator for quantum networks and show that the protocol is able to deliver its service even in the face of significant losses due to decoherence. Finally, we conclude by showing that the protocol remains functional on the extremely resource limited hardware that is being developed today underlining the timeliness of this work
    corecore